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An inequality relating mass and electric charge in general 
relativity 

M Ludvigsent and J A G VickersS 
f Department of Mathematics, University of Canterbury, Christchurch, New Zealand 
$ Department of Mathematics, University of York, York YO1 5DD, United Kingdom 

Received 7 October 1982 

Abstract. We show that the total mass and electric charge of an isolated gravitating system 
satisfy the inequality m 2 l e / ,  provided all matter eventually becomes enclosed within a 
single trapped surface. 

A well known consequence of cosmic censorship and the so-called no hair theorems 
in general relativity is that the total mass m and electric charge e of an isolated, 
charged gravitating system satisfy the inequality 

m t k l ,  (1) 
provided all matter eventually becomes enclosed within a single trapped surface. In 
this paper we shall present a simple direct proof of this inequality which does not use 
cosmic censorship. We use a Witten-type argument similar to that recently used by 
Gibbons and Hull (1982) except that our spinor propagation law is based on a null, 
rather than a space-like, hypersurface. This greatly simplifies our analysis and allows 
us to use the highly developed mathematical machinery associated with a spin- 
coefficient formalism based on a null hypersurface. In this way we also avoid the 
necessity for complicated existence theorems for elliptic partial differential equations 
on which proofs based on Witten-type arguments usually rely. The use of null 
hypersurfaces in the present context does, however, have the drawback that it leads 
to the inequality (1) where m is the Bondi mass with respect to past null infinity 4- 
and, in order for this mass to be well defined, we must assume a certain degree of 
asymptotic flatness at F, Furthermore, if we wish (1) to hold for the ADM mass at 
space-like infinity, io, we must assume a certain degree of regularity in the region of 
io,  in which case (Ashtekar et a1 1979) 

mADM3m 

and hence 

mADM (3) 
Inequality (2) is essentially a consequence of the Bondi mass-gain formula on 4-. 

Our main result is given as follows. 

Theorem. Let M be a space-time which is asymptotically flat at 9- and contains a 
trapped surface T (homeomorphic to S 2 )  which may be connected to 9- by means 
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1170 M Luduigsen and J A  G Vickers 

of a regular, matter free, null hypersurface N .  Then m 3 le/ where m is the Bondi 
mass at the advanced time defined by N and e is the total electric charge contained 
within T. 

The condition that N is matter free and extends to past null infinity guarantees 
that all (non-electromagnetic) matter is contained within the trapped surface. Using 
units such that G = 1, this implies that 

VABA'B'  = V A B ~ A ' E '  and .I = 0 (4) 

on N, where v A B A ' B ~  and A are the spinor components of the Ricci curvature, and 
 AB is the Maxwell field. 

Since our proof can most easily be expressed in terms of the Geroch-Held-Penrose 
(GHP) (1973) spin-coefficient notation, we start by introducing a GHP-type spinor 
dyad (oA, L A )  ( o A i A  = 1) on N .  

Let I" be a past-pointing null vector field on N which points along the generators 
of N and satisfies Pla = O  ( b  = ["V,), and let r be an affine parameter along the 
generators such that Pr = 1. Using I ,  and r,  we choose oA such that la = oAoA' where 
POA = 0, and L A  such that n, := LALA' is orthogonal to the r = constant cross sections. 
Under these conditions oA and L A  are defined up to 

O A  aoA and i A  + a 'LA ( 5 )  

on any r 1= constant cross section. 
The GHP spin-coefficients corresponding to such a dyad satisfy the relations 

Also, if dR represents the area element of the r = constarit cross sections of N we have 

if 77 has weight ( p ,  4 )  and p - 4  = -2. In equation (8) 8 is the GHP 'edth' operator 
which, when acting on a quantity with non-zero conformal wieght (i.e. p +q # O), has 
a component proportional to 7 which is not intrinsic to the r = constant cross section; 
hence the non-vanishing of the right-hand side of equation (8). Similarly, for the 8' 
operator, we have 

if 77 has weight ( p ,  q )  and p - 4  = 2. 

and p'.  These are real and transform according to 
Two quantities which play an important role in our proof are the divergences p 

p + adp p ' +  ((Zd)--'p' (10) 

p s o  and p ' s 0  on T. (11) 

under ( 5 ) .  If r is chosen to be constant on T, we have, by the trapped surface condition, 
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Furthermore, by asymptotic flatness at 9-, we have 

p = - l / r  +O(r-') (12) 

Pp = p  +crc?+qo&J30.  

and from equation (4) and equation (2.22) of GHP we have 

(13) 

These two equations imply that p < 0 over the whole of N and, in particular, that p # 0. 
Consider now two spinor fields A A  and F~ on N which are restrained to satisfy 

the following propagation equations: 

2 

These two equations are generalisation of the propagation equation 

(16) B A' o o V A A ' A B = O  

which we used in an earlier paper (Ludvigsen and Vickers 1982) and correspond 
closely to the Gibbons-Hull (1982) generalisation of Witten's equation (Witten 198 1). 
In terms of the GHP notation, equations (14) and (15) are given by 

PA 0 + ~ p o / i o  = 0 (17) 

a'ho +PA + CP l@o = o (18) 

P P O - C P O A O  = 0 (19) 

P'PO +PP 1 - CPlIO = 0 (20) 

where A 0  = AAO , A 1  = AAL , P O  = PAO and p1 =PAL . From the form of these 
equations, plus the fact that p # 0, it is clear that AA and are uniquely determined 
over the whole of N if A. and F~ are specified on some r = constant cross section. 

- 

A A A A 

Consider next the quantity 

(21) 

where S is any r = constant cross section. From equation (10) we see that I ( S )  invariant 
under transformation ( 5 )  and is therefore a functional only of S and the spinor fields 
AA and pA on S.  Furthermore, by the trapped surface condition (11) we have 

I ( T ) a O .  (22) 

I ( S ) S I ( T )  (23) 
for any cross section S lying in the past of T. 

Since r is defined up to r + A T  + B  ( A  > O )  we can choose it such that it takes a 
positive constant value on S and is zero on T. With this choice of r it is clear that 
(23) holds if 

(24) 
After a long but straightforward spin-coefficient calculation involving equations (17)- 
(201, (41, (71, the GHP equations (2.221, (2.261, (2.31), (2.32) and (2.391, and integrating 

We shall now proceed to show that our propagation equations imply that 

P I  = dI/dr s 0. 
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by parts using equations ( 8 )  and ( 9 ) ,  we obtain 

The inequality ( 2 3 )  is therefore automatically satisfied and, when combined with (22 ) ,  
gives 

I ( S )  3 0. ( 2 8 )  
In the next and final step of our proof we shall show that the fields AA and , u ~  can 

be chosen such that 

l i m I = m * e  ( 2 9 )  

where m is the Bondi mass at the advanced time defined by N .  When combined with 
( 2 8 )  this gives the required result, namely 

m s l e l .  ( 3 0 )  

For the purpose of proving ( 2 9 )  it is convenient to take r to be a Bondi-type 
coordinate such that the r = constant cross sections tend, asymptotically, to a metric 
two-sphere and such that 

= -1 / r  + ~ ( r - ~ ) .  ( 3 1 )  
With this choice of r, asymptotic flatness at 4- implies (Exton et a1 1969) 

where dRo is the area element of a unit two-sphere and Bo and io are the standard 
Newman-Penrose (1966)  'edth' operators. (The presence of the term d$?o in equation 
( 3 3 ,  which does not appear in the corresponding expression in Exton er a1 (1969) ,  
is due to our different choice of L ~ . )  In terms of these asymptotic quantities, m and 
e are given by 

m = - (+; +ao&') d o o  ( 3 9 )  P 
e = -4 ( c p ?  d o o  (40) 

(Exton et a1 1969).  
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From the above asymptotic relations it can easily be deduced that the fields A A  
and w A  have the asymptotic form 

and where A: and p:  can be chosen arbitrarily. We now restrict A: and ~ 0 0  such that 

(45) 

(46) 

Equation (45) determines A A  and p B  up to a constant factor and equation (46), which 
is equivalent to lim,,m AApA = 1,  fixes this constant factor. Equations (45) and (46) 
therefore determine A A  and F A  uniquely over N .  

If we now substitute these asymptotic relations into (21) and use equations ( 4 3 ,  
(461, (39) and (40), we obtain 

0 A o  0 - -P1 - O  A 1  =-c: 
A:,i: +/L:@: = A & :  -AY@: = 1.  

= m - e .  

Thus, by inequality (28), we obtain 

m -e 2 0 .  

Finally, if we replace equation (45) by 

o - - C L 1  1 - P o  A o -  - O  A o  - - O  

and repeat the above calculation, we obtain 

m + e a O  

and hence the required result, namely 

m S le I .  

(49) 
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